

OPTIMIZATION OF ARTIFICIAL GROUND FREEZING APPLICATIONS SUBJECT TO WATER SEEPAGE

Univ.-Prof. Dr.-Ing. Martin Ziegler Geotechnical Engineering, RWTH Aachen University

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

2

Geotechnical Engineering

Univ.- Prof. Dr.-Ing. Martin Ziegler

<u></u>

Mobile freezing unit

Freezing of a cross passage

3

USP Sao Paulo 27 de Setembro de 2013 **Geotechnical Engineering** Univ.- Prof. Dr.-Ing. Martin Ziegler

Widening of underground station for TBM driven tunnels

Geotechnical Engineering

Freezing of an excavation pit wall

5

Geotechnical Engineering

impervious layer

Advantages

- sealing and statically effective
- applicable in almost all types of soil
- always controllable
- non-polluting
- almost completely reversible

Disadvantages

- costly
- Heave during freezing
- high energy consumption
- Restriction of the method in the case of high groundwater velocity

Advantages and disadvantages of the ground freezing method

USP Sao Paulo 27 de Setembro de 2013

7

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

Convective thermal impact

- Delay of frost propagation
- Hindrance of frost body closure possible

Frost body formation under influence of groundwater flow

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

GW-heat flow = $900W/m^2$ at v=1,5m/d and T=13°

Effect of groundwater flow

9

USP Sao Paulo 27 de Setembro de 2013 Geotechnical Engineering

Temperature development during freezing phase

Time-dependent temperature field \Rightarrow transient calculations

Features of thermal freezing simulations

10

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

Thermal properties are temperature-dependent \Rightarrow nonlinear calculation

Release of latent heat during phase change
 Features of thermal freezing simulations

USP Sao Paulo 27 de Setembro de 2013

11

Geotechnical Engineering

Course of unfrozen water content \Rightarrow approximation

Simulation of freezing process

12

Geotechnical Engineering

Frost front is a "moving boundary" for the flow field

Coupled calculations of heat transfer and groundwater flow necessary Features of thermal freezing simulations

13

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

SHEMAT (Simulator for Heat and Mass Transport)

• solution of thermodynamical problems with finite difference method

$$C_{v}(T) * \frac{\partial T}{\partial t} = \frac{\partial}{\partial x_{i}} * \left(\frac{\partial T}{\partial x_{i}} * \lambda_{i}\right) - C_{v,w} * \left(\frac{\partial T}{\partial x_{i}} * v_{f,i}\right) + q$$

- modular structure \rightarrow possibility of activation / deactivation
- originally: solution of geophysical problems (Prof. Clauser)
- advancement: moving boundary for groundwater flow (Prof. Clauser, Dr. Mottaghy, Dr. Rath)
- "freezing"-modul (Dr. Baier)

14

- phase change model / unfrozen water content
- temperature dependent soil parameters λ , c, k
- time-dependent boundary conditions

Geotechnical Engineering

Univ.- Prof. Dr.-Ing. Martin Ziegler

Ŷ

Example: Freezing of a cross passage

Geometry, elevation and freeze pipe arrangement

15

Geotechnical Engineering

Influence of GW-flow on freezing process

16

Geotechnical Engineering

Influence of flow velocity on freezing process

USP Sao Paulo 27 de Setembro de 2013

17

Geotechnical Engineering

Freezing process for basic system (v = 0.75 m/d)

18

Geotechnical Engineering

Freezing process for basic system (v = 0.75 m/d)

Geotechnical Engineering

Concentration in the upstream

20

USP Sao Paulo 27 de Setembro de 2013 Geotechnical Engineering

Concentration in the upstream (v = 0.75 m/d)

21

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

er 🖄

Additional pipes in the upstream

Geotechnical Engineering

Additional pipes in the upstream (v = 0.75 m/d)

23

Geotechnical Engineering

Additional pipes in upstream

Pre-cooling

Geotechnical Engineering

Pre-cooling (v = 0.75 m/d)

25

Geotechnical Engineering

Total freezing time for optimization systems

26

Geotechnical Engineering

27

Geotechnical Engineering

Pre-cooling of an excavation pit wall - v = 1,0 m/d

28

Geotechnical Engineering

Pre-cooling of an excavation pit wall - v = 1,0 m/d

29 Energetische Einsparpotentiale beim Vereisungsverfahren – 2. AGS

Further investigations:

Optimization of artificial ground freezing applications with respect to

- freezing time
- energy consumption

determination of refrigeration capacity

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

30

Estimation of refrigeration capacity with actual construction projects

freezing phase

average refrigeration capacity approx. 0,29 kW/m

Geotechnical Engineering

Estimation of refrigeration capacity with actual construction projects

operating phase

average refrigeration capacity approx. 0,13 kW/m

➡ 45 % of freezing phase

Geotechnical Engineering Univ.- Prof. Dr.-Ing. Martin Ziegler

Freeze-pipe structure

USP Sao Paulo 27 de Setembro de 2013 Geotechnical Engineering

Univ.- Prof. Dr.-Ing. Martin Ziegler

33

SHEMAT - "freezing"-module

simplified calculation approach for refrigeration capacity

- freeze-pipe temperature as Dirichlet boundary condition
- sum of heat flow

$$P = \sum_{i=1}^{6} q_i \cdot A_i$$

$$P = (q_{left} + q_{right}) \cdot y_i \cdot z_i$$

$$+ (q_{front} + q_{back}) \cdot x_i \cdot z_i$$

$$+ (q_{top} + q_{base}) \cdot x_i \cdot y_i$$

34

Geotechnical Engineering

SHEMAT - "freezrefcap"-module

- separate module for determining heat transfer processes inside the freeze-pipe
- detailed input parameters:
 - radial & thermal conductivity of down pipe, riser pipe and borehole, freeze-pipe length
 - pump, supply temperature, refrigerant

35 Energetische Einsparpotentiale beim Vereisungsverfahren – 2. AGS

SHEMAT - "freezrefcap"-module

thermal resistances of freeze-pipe components $\rm R_{outer}$ / $\rm R_{inner}$

- conductive resistance
 - \rightarrow depending on $\lambda_{\text{freeze-pipe component}}$
- convective resistance
 - \rightarrow depending on $\alpha_{\text{refrigerant}}$
 - \rightarrow depending on Nu

input Q [m³/s] and T_{supply} [°C]

results:

- temperatur distribution in freeze-pipe (down/up)
 - \rightarrow refrigeration capacity
- heat flow Q_s to soil
 - \rightarrow coupling with SHEMAT (q_t)

Laboratory test of ETH Zurich

37 Energetische Einsparpotentiale beim Vereisungsverfahren – 2. AGS

simulation results

"freezrefcap" - v = 0 m/d

clear difference between "freezing" and "freezrefcap"

bad heat transfer due to the laminar flow

simulation results

"freezrefcap" - v = 1,5 m/d

good representation of freezing prozess with "freezing"- and "freezrefcap"-module

small underestimation of refrigeration capacity with "freezing"-module

good representation of refrigeration capacity with "freezrefcap"-module

- Groundwater flow may not be neglected, particularly if barriers in the underground create a nozzle effect, leading to an increased velocity of the groundwater.
- Realistic assessment of ground freezing subject to groundwater flow requires numerical methods.

- Considerable cost saving potentials can be achieved by flow-optimized design and operating options
- Realistic determination of refrigeration capacity allows an energetic optimization including the operating phase

42

Geotechnical Engineering

Thank you for your attention!

43

Geotechnical Engineering