Stability of Shallow Tunnels in Soils Using Analytical and Numerical Methods

by

Carlos Carranza-Torres,
Associate Professor,

Department of Civil Engineering,
University of Minnesota Duluth,
Duluth, Minnesota

September 26, 2013 — 16:00 hrs
Auditorio da Cia Metropolitana do Estado de Sao Paulo- METRO

<D |METRO




| was born
and lived here
for 23 years




| have been
living here for
the last for 19
years




Siow Falls

i Lo
hgdison

Swenson Civil Engineering
building (at UMD Campus)
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C. Carranza-Torres, T. Reich & D. Saftner
Departiment of Civil Engineering, University of Minnesofa, Duluth Campus, Minnesota, USA

ABSTRACT: This paper revisits a classical problem of geotechnical engineering involving the
stability of shallow circular tunnels excavated in frictional cohesive materials. The problem is of
practical interest since, among others, it allows establishing conditions of stability for the front
of tunnels in soils excavated manually or using mechanized methods. A historical background of
computational methods developed to establish the stability conditions of shallow cavities in soils
is presented first. In particular, analytical models based on lower and upper bound theories of
plasticity are discussed. Thereafter a classical lower bound model due to Caquot is analyzed and
extended to account for the presence of a surface surcharge and water in the soil being excavated.
This model is proposed as a means of getting a first estimate of the stability conditions of shallow
tunnels under various hydraulic conditions, using a closed-form solution. The concept of factor of
safety, traditionally used in the assessment of stability of slopes in frictional cohesive materials,
is also included in the model. Results obtained with the extended Caquot’s model are shown to
be in accordance with those obtained with more sophisticated finite element and finite difference
methods. A computer spreadsheet including the implementation of Caquot’s extended solution is
also provided in the paper.
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for the design.

Finally, the constitutive model for the soil considered in this paper for the tunnel problems was
the simple Mohr-Coulomb failure criterion. Most commercial software implementing the strength
reduction technique allows application of other constitutive models. A popular one is the Hoek-
Brown failure criterion (Hoek & Brown 1980; Hoek et al. 2002), which is widely used nowadays
in design of excavations in rock masses. The analysis presented in this paper (with the additional
improvements discussed above) could be extended for the case of weak rocks that satisfy the Hoek-
Brown failure criterion.
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Structure of this presentation

e Shallow tunnel collapses.

e Analytical and numerical models for the analysis of stability of shallow tunnels.
e A proposed analytical model for analyzing stability of shallow tunnels.

e Comparison of results with proposed analytical and numerical models.

e Scaling of factor of safety results.

e Final comments.



Structure of this presentation

e Shallow tunnel collapses.



a) Collapse during construction of
the Munich Metro (after Construction
Today, 1994a).

b) Collapse during construction of
the LA Metro (after Civil Engineer
International, 1995).

c) Collapse during construction of
the Singapore underground Mass
Rapid Transit (MRT) system (after
Government of Singapore,

2005).



The metro tunnel collapse at Hollywood Boulevard, Los Angeles

- It occurred on June 22, 1995, while re-mining an existing tunnel of 6.7 m diameter,
excavated with TBM, at 25 m below the ground surface (the re-mining work was
intended to correct a tunnel alignment problem).

- Ground conditions included hard siltstone overlain by alluvium with groundwater
level located 11 meters below the ground surface.

Sources: Civil Engineering International, 1995. History Channel Series “The Best of Modern
Marvels”, volume 3, “Engineering Disasters”, 14, “Hollywood Boulevard”.



The metro tunnel collapse at Hollywood Boulevard, Los Angeles

- The collapse produced a 25 m deep sinkhole that started to fill rapidly with fluid from
broken water and sewage lines, eventually breaking through the tunnel (flooding the
tunnel system).

- The cause of the collapse was reduction of tunnel support pressure by removal of
temporary steel sections installed during re-mining.

Sources: Civil Engineering International, 1995. History Channel Series “The Best of Modern
Marvels”, volume 3, “Engineering Disasters”, 14, “Hollywood Boulevard”.



Collapses at the tunnel front. The Munich Metro Collapse.

- It occurred on June 22, 1995, while excavating a 7 m diameter tunnel, at a depth of
approximately 18 m, following NATM (New Austrial Tunnelling Method) technique,
using road-header and sprayed concrete lining as support.

- Ground conditions included stratum of gravel (with a phreatic surface), overlying
a relatively impermeable marl stratum (where tunnel was excavated).

- The failure involved formation of a cave at the tunnel front.

Sources: Construction Today (1994a, 1994Db).



The metro tunnel collapse at Hollywood Boulevard, Los Angeles

- The forensic engineer in the video (Dr. Wolfgang Roth, from URS, LA), states “...they
took away the closed ring capacity of the liner...”.

- The statement above can be reworded as “the collapse occurred for not closing the
circle of support continuity”.

Sources: Civil Engineering International, 1995. History Channel Series “The Best of Modern
Marvels”, volume 3, “Engineering Disasters”, 14, “Hollywood Boulevard”.



Sources: Construction Today (1994a, 1994Db).



Required pressure at the front when using mechanized methods
(e.g., with a Earth Pressure Balance Machine)

mud at pressure

Sources: Guglielmetti et al. (2008) ‘Mechanized
Tunnelling in Urban Areas’ and ‘Hitachi Shield Machines’,
Hitachi Construction Machinery Co., Ltd.,

www. hitachi-c-m.com



Structure of this presentation

e Analytical and numerical models for the analysis of stability of shallow tunnels.



Analytical models for stability of shallow tunnels

a) Terzaghi (1943) b) Terzaghi (1946)
A S g f ee - Surface
] -1_. .;_. —+— .i....._r-—-w" R l T iR BB Sl e o getRad g
| | '
I : % I I
b/ BRI
! {‘?39"1 }
| I
o1 b4 i
B SURN B .9, =g (3 AU
B b & by
& |
b MY
J $TR a, !

Sources: a) Terzaghi, K. 1943. Theoretical Soil Mechanics. New York: John Wiley & Sons.

b) Proctor, R. V. & White, T. L. 1946. Rock Tunnelling with Steel Supports. Commercial Shearing,
Inc., Ohio.



Analytical models for stability of shallow tunnels

a) Horn (1961) b) Tamez (1985)
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Sources: a) Horn, M. 1961. Horizontal earth pressure on vertical tunnel fronts. National Conference
of Hungarian Civil Engineering Industry. Translation into German by STUVA, Dusseldorf.

b) Cornejo, L. 1989. Instability at the face: its repercussions for tunnelling technology. Tunnels and
Tunnelling, 69—-74.



Analytical models for stability of shallow tunnels

a) Caquot (1934) b) d’Escatha and Mandel (1974)

A A Oz=0

o lines 5

Sources: a) Caquot, A. 1934. Equilibre des massifs a frottement interne. Paris: Gauthier-
Villars. b) d’Escatha,Y. & Mandel, J. 1974. Stabilité d’une galerie peu profunde en terrain
meuble. Industrie Minérale 6, 1-9.



APPENDIX A. DEMONSTRATION OF CAQUOT’S STABILITY EQUATION

Caquot’s solution (Caquot 1934; Caquot & Kerisel 1949) is a classical solution for determining the
stress field around a circular tunnel located below a flat surface. This appendix presents a demon-
stration of equation (1) in the main text, which is one of the fundamental expressions conforming
Caquot’s solution. The analysis that follows refer to the same problem presented in Figure 9.

In reference to Figure 9, and to simplify the formulation, the radial distance, r, is first scaled with
respect to the tunnel radius, ¢. This defines the dimensionless ratio, p, i.e.,

-
p== (A1)
a
Note that according to equation (A-1), the position of the ground surface, » = h in Figure 9, 15
determined by the variable £, i.e.,
h
¢ =- (A-2)
a
The material surrounding the tunnel is assumed to obey the Mohr-Coulomb failure criterion, so
that the relationship between major and minor principal stresses at failure, the quantities oy and &3,
respectively, is
o = 03N¢ + 26\/ N¢ (A-3)

In equation (A-3), ¢ 1s the cohesion and N, 1s the passive reaction coefficient of the material (see,
for example, Terzaghi et al. 1996), which is computed from the internal friction angle, ¢, as follows

Y !
%_me_m( +) (A-4)

Also, to simplify the formulation, a particular form of scaling that applies to Mohr-Coulomb
shear failure will be used. The scaling consists in adding the term « tan ¢, or equivalently, the term
2¢/Ny/(Ny — 1) to the normal stresses (see, for example, Anagnostou & Kovari 1993; Carranza-

Torres 2003). Therefore, when scaled according to the rule mentioned above, the radial and hoop
stresses, o, and oy, respectively (see Figure 9), become




Analytical models for stability of shallow tunnels
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Numerical models for stability of shallow tunnels

Source: Fairhurst, C. & Carranza-Torres, C. 2002. “Closing the Circle”. In J. Labuz & J. Bentler
(Eds.), Proceedings of the 50th Annual Geotechnical Engineering Conference. February 22,
2002. University of Minnesota. (Available for downloading at ‘Fairhurst Files’,
www.itascacg.com).



www.itascacg.com




Numerical models for stability of shallow tunnels

Source: Fairhurst, C. & Carranza-Torres, C. 2002. “Closing the Circle”. In J. Labuz & J. Bentler
(Eds.), Proceedings of the 50th Annual Geotechnical Engineering Conference. February 22,
2002. University of Minnesota. (Available for downloading at ‘Fairhurst Files’,
www.itascacg.com).



Numerical models for stability of shallow tunnels

Source: Fairhurst and
Carranza-Torres (2002)
“Closing the Circle”



Numerical models for stability of shallow tunnels

Source: Fairhurst and Carranza-Torres (2002) “Closing the Circle”



Structure of this presentation

e A proposed analytical model for analyzing stability of shallow tunnels.



Basic characteristics of the proposed model for analysis of shallow tunnel
stability (as described in Sections 4, 5 and the appendices in the paper)

- Use of a generalized form of Caquot’'s model for Mohr-Coulomb material that
accounts for cylindrical and spherical cavities and a surcharge on the ground surface.

qq ds
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— In the formulae for the model,
k = 1 implies a cylindrical cavity,
while k = 2 implies a spherical cavity







Basic characteristics of the proposed model (Cont.)

- Consideration of a Factor of Safety, FS, to quantify stability of the excavation,
as commonly done with the case of slopes.

- The definition of factor of safety is agreement with the definition used in the
implementation of the ‘strength reduction technique’ in commercial finite element
or finite difference software.



Slope stability analysis using the strength reduction technique



Slope stability analysis using the strength reduction technique
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where the parameter & dictates the type of excavation being considered —ie., &k = 1 is fora

cylindrical excavation and & = 2 is for a spherical excavation, and the parameter Ny is the passive
reaction coefficient defined as follows (see, for example, Terzaghi, Peck, & Mesri 1996)

_1+sin¢>_ 2 f
= g (4+2) @)

(1

It should be noted that equation (1) is valid only when the given Mohr-Coulomb parameters for
the soil lead to a state of limit equilibrium for the tunnel —the situation for which the excavation
is about to collapse. In general, the strength of the material, as defined by the cohesion, ¢, and the
internal friction angle, ¢, will be larger than the strength associated with the critical equilibrium
state of the tunnel (i.e., the parameters involved in equation 1).

Next the factor of safety, #S, for the shallow tunnel is defined to be the ratio of actual Mohr-
Coulomb parameters and crifical Mohr-Coulomb parameters that lead to failure of the tunnel (see

Figure 10), i.e.,
c tan ¢
FS= — =
CL'?' tan ¢Cr
The definition of factor of safety given by equation (3) (see also Figure 10) is the very same
definition of factor of safety implemented in the strengrh reducrion technigue for computation of
factor of safety for slopes in Mohr-Coulomb materials with non-linear finite element and finite
difference codes (see, for example, Zienkiewicz et al. 1975; Donald & Giam 1988; Dawson et al.

1999; Hammah et al. 2007 and 2008). In the last few years, this technique has become a standard

3

method for computing stability conditions of surface excavations (typically slopes) and can be found




Implementation of a Factor of Safety in the extended Caquot’s model



e~ aCCOTAIng 10 Caquot’s
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implemented in the most popular commercial numerical codes for analysis of excavations —for
example, FIAC (Ttasca, Inc. 2011); Phase2 (Rocscience, Inc. 2011); Plaxis (Plaxis, bv 2012).

With the definition of factor of safety given by equation (3), Caquot’s fundamental relationship
(equation 1) can now be written as follows

N —E(NFF-1
&z(ﬁﬂiwb)(é)(” @
yh yh yh Ny —1 a
~ 1 (h)k(chSl) ~ (h,)l e
k(NS —1)—1 | \a a yh Ny —1
where NJ* is
NES 1 4 sin (tan_1 %) )
" 1—sin (tan—! %)

Equation (4), which is valid for any given values of Mohr-Coulomb parameters ¢ and ¢, allows
computation of a factor of safety for the case of tunnels in frictional cohesive materials.

When the material is frictionless (i.e., @ = 0 degrees and therefore N¢p = 1), a series of
singularities appear in equation (4), which can be overcome by application of L’Hospital rule.
Indeed, for frictionless materials, equation (4) becomes,

Py (BN s (R 6

vh yh a yh a ©
where

B (7

B = o

and therefore, solving for F5 in equations (6) and (7), the factor of safety for the shallow tunnel can
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be explicitly written as follows

22kin (4
FS — vh (a) — (8)
L+ g -5-0)

As seen from the equations above, computation of the factor of safety for the general case of
frictional cohesive material requires solving the non-linear equation (4) by means of some numerical
technique. Appendix B in this paper presents a computer spreadsheet and associated programming
code required to compute the factor of safety, F'S, from the transcendental equation (4).

5 CONSIDERATION OF WATER PORE-PRESSURE IN CAQUOT’S MODEL

When excavating shallow tunnels in soils, and as it is typically the case with other geotechnical
structures like slopes and foundations, water in the ground and water on the face of the excavation
itself can be expected to have an influence in the stability of the opening.

Although the undrained condition for the ground as it applies to saturated clays can be accounted
for readily with equations (6) through (8) in Caquot’s extended model, for the general case of
permeable soils, as a first approximation to solving the problem, the effect of water can be accounted
for by using Terzaghi’s effective stress principle. This implies decomposing total stresses in the
ground into effective stresses and water pressure, and computing the strength of the material in
terms of effective stresses only (see, for example, Terzaghi et al. 1996). A comprehensive analysis
of this type for the case of deep tunnels in permeable porous media and various hydraulic conditions
for the tunnel itself (i.e., whether water pressure exists inside the tunnel or not) has been presented
in Carranza-Torres & Zhao (2007). In this section, Caquot’s model is further extended to consider
water pressure in the ground according to Terzaghi’s principle and various hydraulic conditions.

The five different cases considered here are listed in Table 1 and represented in Figures 11
through 13. The solution of these different cases can be obtained by applying a similar procedure
as the one in Appendix A, this time decomposing the total (stress) problem into effective and water
pressure components and applying the appropriate stress boundary conditions (which may or may
not include water pressure depending on the case considered) at the crown of the tunnel and on the
ground surface.

Table 1. The five hydraulic conditions M

’/CZSM




Basic characteristics of the proposed model (Cont.)

- Consideration of ‘undrained’ conditions or drained ‘drained’ conditions for water
pressure in the ground, in the latter case with values of water pressure in the ground
associated with a phreatic or water surface below or above the ground surface and
existence of water pressure inside the tunnel (limiting cases in which tunnel is
considered ‘dry’ or ‘flooded’).



Various hydraulic conditions considered in the extended Caquot’s model



Various hydraulic conditions considered in the extended Caquot’s model



Basic characteristics of the proposed model (Cont.)

- Analytical model is implemented in the form of a computer spreadsheet,
implementing VBA macros.



Structure of this presentation

e Comparison of results with proposed analytical and numerical models.



Comparison of factor of safety results obtained with
analytical and numerical models



Comparison of factor of safety results obtained with
analytical and numerical models (Cont.)
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analytical and numerical models



Comparison of factor of safety results obtained with
analytical and numerical models (Cont.)



Comparison of factor of safety results obtained with
analytical and numerical models (Cont.)
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Comparison of factor of safety results obtained with
analytical and numerical models



Structure of this presentation

e Scaling of factor of safety results.



Slope stability analysis using the strength reduction technique




Scaling of factor of safety for slopes excavated in Mohr-Coulomb materials
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From Hoek and Bray (1981)
Rock Slope Engineering. Institute
of Mining and Metallurgy, London.
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Figure 8.7 Circular failure chart number 2—ground water condition 2 (Figure 8.5).
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Scaling of factor of safety for shallow excavated in Mohr-Coulomb materials
(cylindrical cavity and zero internal pressure)
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5 CONSIDERATION OF WATER PORE-PRESSURE IN CAQUOT’S MODEL

When excavating shallow tunnels in soils, and as it is typically the case with other geotechnical
structures like slopes and foundations, water in the ground and water on the face of the excavation
itself can be expected to have an influence in the stability of the opening.

Although the undrained condition for the ground as it applies to saturated clays can be accounted
for readily with equations (6) through (8) in Caquot’s extended model, for the general case of
permeable soils, as a first approximation to solving the problem, the effect of water can be accounted
for by using Terzaghi’s effective stress principle. This implies decomposing total stresses in the
ground into effective stresses and water pressure, and computing the strength of the material in
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of this type for the case of deep tunnels in permeable porous media and various hydraulic conditions
for the tunnel itself (i.e., whether water pressure exists inside the tunnel or not) has been presented
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water pressure in the ground according to Terzaghi’s principle and various hydraulic conditions.

The five different cases considered here are listed in Table 1 and represented in Figures 11
through 13. The solution of these different cases can be obtained by applying a similar procedure
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Table 1. The five hydraulic conditions M
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Scaling of factor of safety for shallow excavated in cohesionless Mohr-Coulomb
materials, or Tresca materials (cylindrical cavity and zero internal pressure)



Structure of this presentation

e Final comments.



Final comments

- Introduction of a factor of safety to assess stability for shallow tunnels, as commonly
done in the case of slopes, could be an useful indicator of how far or close a designed
(section or front of) tunnel is from collapse, particularly at the early stages of design,
when different alternatives for support are considered (or alternatively, if remedial
works dictate removing support, as in the case of the Hollywood Boulevard tunnel
collapse described earlier on).

- With the implementation of the ‘strength reduction technique’ to compute factor of
safety in most commercial software for analysis of geotechnical problems (FLAC,
PhaseZ2, Plaxis and others), there is an opportunity to explore the application of the
concept of factor of safety for shallow tunnels (as has been traditionally done with the
case of slopes) —indeed, one of the objectives of our paper is to revive discussions on
the topic.



Final comments (Cont.)

- Despite the availability of the strength reduction technique in most software for
numerical analysis of geotechnical problems, an analytical solution that allows fast
assessment of the stability conditions of shallow tunnels (e.g., through a factor of
safety) will allow implementation of statistical techniques (such as Monte Carlo
simulations) to account for variability and uncertainty in ground variables, and so
compute probability of failure and reliability of the design (as currently done for the
case of slopes and other surface excavations).



Final comments (Cont.)

- The analysis presented in the paper is by no means complete and further
developments are possible. Two of these are listed below (others are listed
in the paper.

- Factor of safety results obtained with the approximate Caquot’s solution and with the
strength reduction technique in finite element and finite difference models, need to be
summarized in dimensionless representations, i.e., charts equivalent to slope stability

charts, from where regression analysis could be intended (e.g., to provide equations to
compute factor of safety of shallow tunnels in terms of dimensionless variables).

- The limitations of Caquot’s solution have to be evaluated further, in particular, in
regard to stresses in the ground prior to excavation (e.g., lateral earth pressure
coefficient) and distribution of pressure inside the tunnel. This can be achieved by
comparison of Caquot’s models and those obtained with the strength reduction
technique in numerical models.
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ABSTRlACT: This paper revisits a classicill problem of geotechnical engineering involving the

stability of shallow circular tunnels excavated in fpictional cohactwa matariale Tha neablam o af

practical interest since, among others, it allows ¢ Paper available for dOWhloading at
of tummels in soils excavated manually or using m¢ \w\avw.d.umn.edu/~carranza/PAPERS/
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is presented first. In particular, analytical models based on lower and upper bound theories of
plasticity are discussed. Thereafter a classical lower bound model due to Caquot is analyzed and

extended to account for the presence of a surface surcharge and water in the soil being excavated.

This model is proposed as a means of getting a first estimate of the stability conditions of shallow

tunnels under various hydraulic conditions, using a closed-form solution. The concept of factor of

safety, traditionally used in the assessment of stability of slopes in frictional cohesive materials,

is also included in the model. Results obtained with the extended Caquot’s model are shown to

be in accordance with those obtained with more sophisticated finite element and finite difference

methods. A computer spreadsheet including the implementation of Caquot’s extended solution is

also provided in the paper.

1 INTRODUCTION

The stability of shallow circular cavities excavat
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